Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine.
نویسندگان
چکیده
The current treatment for patients with hypothyroidism is levothyroxine (L-T4) along with normalization of serum thyroid-stimulating hormone (TSH). However, normalization of serum TSH with L-T4 monotherapy results in relatively low serum 3,5,3'-triiodothyronine (T3) and high serum thyroxine/T3 (T4/T3) ratio. In the hypothalamus-pituitary dyad as well as the rest of the brain, the majority of T3 present is generated locally by T4 deiodination via the type 2 deiodinase (D2); this pathway is self-limited by ubiquitination of D2 by the ubiquitin ligase WSB-1. Here, we determined that tissue-specific differences in D2 ubiquitination account for the high T4/T3 serum ratio in adult thyroidectomized (Tx) rats chronically implanted with subcutaneous L-T4 pellets. While L-T4 administration decreased whole-body D2-dependent T4 conversion to T3, D2 activity in the hypothalamus was only minimally affected by L-T4. In vivo studies in mice harboring an astrocyte-specific Wsb1 deletion as well as in vitro analysis of D2 ubiquitination driven by different tissue extracts indicated that D2 ubiquitination in the hypothalamus is relatively less. As a result, in contrast to other D2-expressing tissues, the hypothalamus is wired to have increased sensitivity to T4. These studies reveal that tissue-specific differences in D2 ubiquitination are an inherent property of the TRH/TSH feedback mechanism and indicate that only constant delivery of L-T4 and L-T3 fully normalizes T3-dependent metabolic markers and gene expression profiles in Tx rats.
منابع مشابه
Ala92 type 2 deiodinase allele increases risk for the development of hypertension.
Accumulating evidence suggests that genes of the hypothalamic-pituitary-thyroid pathway influence susceptibility to hypertension. Type 2 iodothyronine deiodinase is responsible for the conversion of thyroxine to tri-iodothyronine for use in peripheral tissues. The present study evaluated whether a type 2 iodothyronine deiodinase nonsynonymous polymorphism, threonine 92 to alanine (Thr92Ala), is...
متن کاملHypothalamic thyroid hormone in energy balance regulation.
Thyroid hormone has been known for decades as a hormone with profound effects on energy expenditure and ability to control weight. The regulation of energy expenditure by thyroid hormone primarily occurs via regulation of the activity, or expression, of uncoupling proteins in peripheral tissues. However, mechanistically this requires a signal from the brain to change circulating levels of thyro...
متن کاملMyosin V plays an essential role in the thyroid hormone-dependent endocytosis of type II iodothyronine 5'-deiodinase.
In astrocytes, thyroxine modulates type II iodothyronine 5'-deiodinase levels by initiating the binding of the endosomes containing the enzyme to microfilaments, followed by actin-based endocytosis. Myosin V is a molecular motor thought to participate in vesicle trafficking in the brain. In this report, we developed an in vitro actin-binding assay to characterize the thyroid hormone-dependent b...
متن کاملPhotoperiod history-dependent responses to intermediate day lengths engage hypothalamic iodothyronine deiodinase type III mRNA expression.
Perihypothalamic thyroid hormone signaling features prominently in the seasonal control of reproductive physiology. Triiodothyronine (T(3)) signaling stimulates gonadal development, and decrements in T(3) signaling are associated with gonadal regression. Type 3 iodothyronine deiodinase (DIO3) converts the prohormone thyroxine (T(4)) into biologically inactive 3,3',5'-triiodothyronine, and in lo...
متن کاملType 3 Deiodinase and Consumptive Hypothyroidism: A Common Mechanism for a Rare Disease
The major product secreted by the thyroid is thyroxine (T4), whereas most of the biologically active triiodothyronine (T3) derives from the peripheral conversion of T4 into T3. The deiodinase enzymes are involved in activation and inactivation of thyroid hormones (THs). Type 1 and type 2 deiodinase (D1 and D2) convert T4 into T3 whereas D3 degrades T4 and T3 into inactive metabolites and is thu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 125 2 شماره
صفحات -
تاریخ انتشار 2015